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ABSTRACT 
This paper presents a novel method of driver activity 

recognition for autonomous vehicles. We identify the key 

activities that a driver will perform in an autonomous 

vehicle and collect recording of these activities. We then 

build a predictive model to recognize those activities with 

training data from 8 subjects. Our generalized model have 

achieved up to 84% accuracy using LSTM.  
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INTRODUCTION 
Recognizing human activities is crucial and widely needed 

in smart homes, health care, and so on. Our work aims to 

recognize human activities in self-driving cars to address 

the challenge with take-over requests and allow 

manufacturers to build a more human centric vehicle. As 

conditional autonomous driving gains more traction in the 

near future, especially in the field of self driving trucks, the 

vehicle must understand what the driver is doing to safely 

and timely request a take-over [17,10]. To perform this 

activity recognition, we propose a two stage ensemble that 

uses a pose estimator to extract the driver’s skeleton model 

and a random forest or LSTM to perform classification. The 

feature extraction method using the pose estimator reduces 

the amount of data required, is robust to all drivers and 

vehicles, and protects the privacy of the driver (as no 

images need to be stored). For classification, general model 

using a LSTM and a random forest classifier.  

PRIOR WORK 
Previous studies [1,2] have been conducted to understand 

driver behaviours in autonomous vehicles. Of these, 

researchers have shown a dependence of take-over time and 

quality on driver’s activity and distraction level [11,12] 

Other studies have explored traveller preferences in AVs [3] 

compared to existing mode of travel. Most of these studies 

are based on surveys conducted after several hours of 

driving or through a virtual simulation environment. 

Additional studies [4,5] also show that drivers are more 

likely to perform “household activities” in AVs. While 

these prior research place a heavy emphasis on the 

investigating the activities performed in AVs and their 

potential impact on the vehicle decisions, none of these 

studies use prediction models to predict driver activity 

using visual data processing.  

Recently however, researchers have started to perform 

driver activity recognition for autonomous vehicles. In 2015, 

researchers used eye and hand tracking to predict whether 

the driver is performing one of the four activities [15]. This 

achieved an acceptable overall accuracy of 77% for 4 

activities (idle, video, read, and email) . Very recently, an 

ongoing project from MIT [13] is attempting to build a 

human centric autonomous vehicle using a deep learning 

approach [14]. Part of this project is detecting the driver’s 

activity. While no accuracy results have been published yet, 

their method involves using gaze tracking and body 

movement tracking through optical flow.  

In the area of general activity recognition through pose 

estimation, previous research has also shown high promise. 

The models used in these research are similar to our two 

stage ensemble model [16]. A pose estimator performs 

initial feature extraction and then a second stage performs 

the classification. For the second stage, various models 

have been used including an ensemble of SVMs (90% 

accuracy) and a RNN (94.5% accuracy) [17].  

ACTIVITY IDENTIFICATION 
We narrowed down the activities to the domain that is 

“commuting from home to work” of a working professional. 

Literature [1-7] suggests that autonomous vehicles (AV) 

will enable drivers to catch up on the activities like media 

watching, work, reading, and sleep they are sacrificing for 

long travel times. To investigate this, we collected one 

subject data commuting from home to work on “non self 

driving car” and observed that subject performed different 

activities while stopped at traffic signals such as eating, 

using cell for navigation, talking, messaging on cell, 

listening to media, and stretching. We think that drivers will 

perform these “stopped” activities more frequently when 

AVs become widely available. Based on this we have 

decided to focus on recognizing and classifying 5 major 

activities of: eating, talking on cell, messaging on cell, 

reading a book, and a baseline of hands on steering wheel in 

a stationary car.  

 

Figure 1. Subject activity in a moving car during stop at signals while 

commuting from home to work on a routine day. 



DATA COLLECTION AND ANNOTATION 
We collected data on a total 10 subjects. Only 8 subjects 

were used as the other two subjects had poor video quality 

that will negatively impact the accuracy. Subjects were 

asked to sit in the driver’s seat of a stationary car. An 

iPhone 6s with a wide angle lens is mounted on top of the 

front drivers glass with good visibility to steering wheel and 

subject for capturing videos as shown in Figure 2.  

 

Figure 2. The camera mounting and positioning for recording “drivers” 

performing activities.  

The subject is then asked to “text message” on cell for 1 

min and then with a voice command, the subject is asked to 

take over control with “hands on steering wheel position 

(baseline)”. After 30 sec subject is asked to “make a phone 

call” for 1 min with switching of the cell phone from left to 

right hand. The subject is then asked to place “hands on 

wheel” for another 30 sec. Next, subject is asked to “read a 

book” for 1 min and then switch back to hands on steering 

wheel for 30 sec. Next, subject is asked to “eat some food” 

for 1 min and finally coming back to steering wheel for 30 

sec. 4 different human activities are performed with a 

baseline “hands on steering” position interleaved in 

between each activity. All these videos are captured with 

1080P 30fps resolution and are processed in the later steps. 

Table 1. shows different activities that subjects performed, 

start time for each activity, end time for each activity with 

intervals tabulated. 

Start 

(min:sec) 

End  Activity Interval 

(sec) 

0 30 Steering 30 

0:30 1:30 Texting 60 

1:30 2:00 Steering 30 

2:00 2:30 Calling Right hand 30 

2:30 3:00 Calling Left Hand 30 

3:00 3:30 Seering 30 

3:30 4:30 Reading 60 

4:30 5:00 Steering 30 

5:00 6:00 Eating 60 

6:00 6:30 Steering 30 

Table1. Data collected from each subject with time interval for each 

activity. 

For data annotation, we made special accommodations for 

the calling and eating activities. For calling, we specifically 

labelled whether the calling was done with the left or right 

hand. For eating, we annotated the motions of bring food to 

and from the mouth. As a result, we have a total of 7 

subclasses: steering, texting, calling left, calling right, 

reading, eating to mouth, and eating to lap. As will be 

discussed in the model design section, this provides an 

accuracy improvement over naive annotation of the target 5 

activity classes. 

CONTRIBUTIONS AND APPROACH 

Unlike previous research in the field of driver activity 

recognition, we chose a purely visual approach based on 

driver pose. We believe that such a design can be better 

generalized to different drivers and large number of 

activities. Our classifier uses a two stage ensemble network 

with a human pose estimator as the first stage and a LSTM 

or random forest classifier as the second stage. This design 

is largely influenced by our dataset size and model 

interpretability. From related research, we know that an 

ensemble network can outperform a pure vision based CNN 

in activity recognition tasks [16]. However, we do not have 

enough diverse data to fully train a vision CNN needed for 

the first stage, therefore, we chose to incorporate a pre 

trained pose estimation network instead. The second stage 

classifier, either a LSTM or random forest, then uses these 

pose information to predict the driver activity. 

POSE ESTIMATOR DESIGN 

For pose estimation, we tried various models including 

Posenet and Openpose. We chose a Tensorflow port of the 

open source model Openpose [6,7,8,9], which is developed 

from CMU, for its ease of integration and relatively high 

accuracy. This neural network is pretrained to detect 

various joints on the human body and output their X and Y 

locations in the image as shown in Figure 3. For our model, 

we only use joints located in the upper torso, specifically 

the wrists, elbows, shoulders, and nose. To reduce 

inaccuracy noise of the pose estimator, we perform a 

temporal moving average filter across 5 frames to smooth 

out any jitters in the pose. Additionally, we use the relative 

distance of joints to the neck to remove camera and human 

position biases.  

 



Figure 3: Visualization of the pose estimation 

Given that this network is designed to work on all people in 

all environments, it should be robust for all people (sex, age, 

race, etc) and all vehicles. A benefit of using pose 

estimation is that we can preserve the privacy of the driver. 

Instead of storing videos for training the network, we can 

only store the poses instead.  

SECONDARY FEATURES 
Using only the raw pose estimator features gave poor 

accuracies for texting, reading, and eating, especially with 

the random forest classifier. In the case of texting and 

reading, the overall poses are very similar, with the main 

difference being the distance between left and right hands. 

Generally, the distance is smaller for phones, but larger for 

books/magazines. Therefore, we added a secondary feature 

that computes the distance between left and right wrist 

joints. Eating detection is particularly challenging as the 

key distinction between this and other activities is the brief 

motion of bringing food up to the mouth. This motion is 

best represented by the right wrist velocity and the distance 

between right wrist to the nose. Therefore, we created 

secondary features through these representations. 

Additionally, as stated in the data collection section, we 

extracted the motions of bringing food to and from the 

mouth by explicitly annotating them. Due to the sparsity of 

these motions, we also perform data augmentation 

specifically for these eating motions. This is done through 

generating features based on a Gaussian distribution of the 

recorded real data. With this, we were able to significantly 

improve the accuracy of detecting the eating activity. Note 

that the velocity feature is only used with for the random 

forest model as the LSTM model already has the ability to 

understand temporal relationships. 

RANDOM FOREST DESIGN 
The random forest model uses 100 estimators to predict the 

7 subclasses. To capture temporal information, we perform 

windowing using window sizes of 2 seconds and an overlap 

of 1 second. These windows are also what allow us to 

extract the velocities.  

LSTM FRAMEWORK DESIGN 
The pose estimator extracts the spatial information of the 

driver activity, so we chose Long Short Term Memory 

(LSTM) the LSTM network to extract temporal information. 

By adding a cell state based on RNN, LSTM is good at 

dealing with time series problem and can address two issues 

of standard RNN: exploding gradients and vanishing 

gradients. 

The whole LSTM framework has three layers. Two LSTM 

layers and one Dense layer with “Softmax” activation. The 

input is a 3D matrix (n samples, 11 time steps, 13 features). 

Since we have added two distances features that calculated 

by ourselves, we normalize the features at the very 

beginning. Also, we have shuffled the data. The train 

validation split is 0.8/0.2 and the batch size is 1024.  The 

first LSTM layer has 128 outputs while the second LSTM 

layer has 256 outputs.For the two LSTM layers, we used 

0.2 dropout and 0.2 recurrent dropout to prevent over-fitting. 

For Dense layer, we used softmax activation to give out the 

possibility of the predicted classes. 

 

 

Figure 4. LSTM framework used to predict driver activities 

For optimizer, we have compared Stochastic gradient, 

Adam, and NAdam. We chose Nesterov Adam as our 

optimizer with a schedule learning rate decay of 0.004. 

With NAdam, our model can converge quickly with a 

momentum as shown in Figure 5. The X-axis is epoch 

while Y-axis is the percentage of loss. The blue line is 

training loss and the orange line is validation loss. At the 

beginning, we had a total 1000 epochs, but after nearly 500 

epochs, the validation loss stopped decayed, thus we 

applied early stopping to monitor the validation loss. If the 

validation loss stops decaying, the training is terminated. 

 

Figure 5. Plot showing entropy loss for training and validation.  



RESULTS 

We were able to achieve an overall F1 score of 79.1% for 

the random forest classifier and 84.1% for the LSTM 

classifier. This is done using a leave one subject out 

validation strategy. While the overall accuracy is fairly 

good, we can see that there is a high variance in the 

accuracy of different classes. Specifically, the reading and 

eating class accuracies are relatively low as seen in Figure 6 

and 7. This is likely due to the inaccuracies of the pose 

estimator, especially for reading. In many of the reading 

video data, there are moments when the book/magazine 

occludes much of the arms and causes the pose estimator to 

produce incorrect pose estimations. For eating, there is also 

high variability between subjects in their motions. Some 

people brought their food all the way down to the lap area 

while others kept their food close to the mouth. 

 

Figure 6. Confusion matrix using random forest classifier 

 

Figure 7. Confusion matrix using LSTM classifier 

We also noticed that the LSTM classifier tends to 

generalize better to all subjects, with the lowest subject 

accuracy being 57%. The random forest classifier can 

achieve higher accuracy for some subjects but also much 

lower accuracy for others. This is likely a sign of overfitting. 

We believe that for the LSTM, we can achieve even higher 

accuracy and less inter-subject variability if we had more 

data. For subject 6, the video quality is relatively poor due 

to glare on the windshield and the pose estimate was highly 

inaccurate for the eating and calling activities. 

 

Table 2. F1 scores for each subject. 

DISCUSSION 
The results show that it is feasible to use a two stage 

ensemble with a pose estimator and LSTM to perform 

driver activity recognition. However, the accuracy greatly 

depends on the pose estimator accuracy. In cases where 

parts of the body are occluded, the pose estimator will give 

inaccurate pose estimates. This can corrupt the training of 

the model and thereby reducing accuracy. One way to 

alleviate this issue is to use multi-camera pose estimation, 

but the computational costs will be significantly increased. 

Additionally, a 3D pose estimator can also increase 

accuracy while removing camera positioning dependency 

compared to the 2D estimator we are using currently.  

For the LSTM model, we also observed that it requires a 

large amount of data to properly discover feature 

relationships and generalize. During testing, a LSTM 

trained on 3 subjects was completely unable to perform 

accurate prediction on a 4th subject. Training with 7 

subjects however gave us acceptable accuracies. Given that 

the LSTM achieved higher overall accuracy and lower 

accuracy variances than the random forest classifier, we can 

interpret that the LSTM generalizes better.  

In hopes to boost accuracy, we also tried to implement an 

object detection network into the first stage. We used the 

YOLOv3 network for its high speed to accuracy ratio. 

While the network can accurately detect the cellphone, it 

struggles to detect books and food. In many cases, it will 

misclassify a book as a cellphone. Given this, we chose not 

to integrate YOLOv3 as it is not accurate enough for our 

purposes. However, we believe that the accuracy can be 

improved if we retrained YOLOv3 with only the classes of 

interest (cellphone, book, various food, etc) instead of the 

default 80 general object classes. 



FUTURE WORK 

Camera position and quality have great impact on activity 

recognition. Currently, we deploy the camera outside of 

cars’ window, which is not practical. For future work, we 

hope to deploy the camera inside the car using a wider 

angle lens. In addition, 10 people’s data are not enough to 

fully leverage the LSTM, so more data can potentially give 

better results as the LSTM learns to generalize better. We 

also wish to increase the number of activities in the study to 

include sleeping, putting on face make-up, playing games, 

watching movie, and conversation with passenger to be 

collected in an AV simulator. Recently, many unsupervised 

methods has been proposed that can be used with online 

learning to predict activities that were not trained on before. 

Similarly, we can also perform model personalization to 

increase accuracy for a particular driver. As discussed 

earlier, switching to a 3D pose estimator and implementing 

a retrained YOLO can bring higher accuracy and better 

robustness. We could also improve accuracy by using 

multi-modal approaches using audio. Lastly, an extension 

to our model is to also predict take over time from 

autonomous mode to manual mode.   

 

CONCLUSION 

We have identified different driver activities that are 

relevant for AVs and presented a model that can accurately 

predict the driver’s activity. Using video recordings of 

various driver activities that we collected from a stationary 

car, we extracted features using a pose estimator and built 

prediction models to classify these activities with 

accuracies of up to 84.1% with a LSTM classifier. We also 

compared the performance of a RF to LSTM to show the 

benefits of a LSTM classifier. Given that our model does 

not require any specialized sensing hardware other than a 

camera, our design can be economically implemented in all 

vehicles.  
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